HW5: Burgers' equation and the 4/5 Kolmogorov's law

To be returned on February 27, 2018

I. TRAVELING SHOCK IN BURGERS' EQUATION

During our class, we found the steady shock for the 1D Burgers' equation

$$\partial_t u(x,t) + \frac{1}{2} \partial_x u^2 = \nu \partial_x^2 u, \qquad (1)$$

when we maintain the velocities $u \to \pm U$ as $x \to \mp \infty$.

- 1) Generalize the solution to the case when we maintain the velocities at infinity $u(-\infty) = U_-$ and $u(+\infty) = U_+$ with $U_- > U_+$.
 - 2) Verify that the dissipation remains finite in the limit $\nu \to 0$.
- 3) The velocity of the shock that you have found above is a special case of the Rankine-Hugoniot condition. By integrating the conservation law

$$\partial_t w(x,t) + \partial_x f(w) = 0, \qquad (2)$$

around a shock moving with velocity V_s , derive the Rankine-Hugoniot relation $V_s = \frac{f_+ - f_-}{w_+ - w_-}$ where the subscripts \pm refer to the value on the proximal right and left of the shock, respectively.

II. PRE-SHOCK IN BURGERS' EQUATION

During our class, we have shown that the first shock occurs at a time t^* determined by the minimum value of the gradient field at the initial time. The initial gradient and velocity fields are denoted $g_0(a)$ and $u_0(a)$, with $g_0 = \partial_a u_0$. Denote the absolute minimum as $\min_a g_0(a) = -G$ and expand $g_0(a) \simeq -G + \alpha/2a^2 + \ldots$ around its minimum, which is assumed to be at the origin.

- 1) Denote by X(a,t) the position at time t of a particle that was initially at a. Write down the expression for X in terms of a and $u_0(a)$.
 - 2) Re-derive the relation between the first shock time t^* and G.
- 3) Show that the inverse Lagrangian map a(X,t) at $t=t^*$ behaves singularly around the origin X=0, namely it has a 1/3 power-law behavior.
 - 4) Show that at the time t^* the velocity u(X,t) also develops a 1/3 singular behavior at the origin.
 - 5) Show that the enstrophy $\Omega(t) = \int (\partial u/\partial x)^2 dx$ diverges as $(t^* t)^{-1/2}$ as t approaches t^* .

III. HOPF-COLE TRANSFORMATION FOR BURGERS' EQUATION

Define the stream function as $u = -\partial_x \psi(x, t)$. By taking the space derivative of the Burgers' equation, write down the equation for ψ_t . An unknown function g(t) appears when a space-derivative is factored out. Suppose first that the unknown time-dependent function g(t) = 0.

- 1) Use the Hopf-Cole transformation $\psi(x,t) \equiv 2\nu \log \theta(x,t)$ to reduce the previous equation for ψ_t to the heat equation.
 - 2) Use the Gaussian propagator for the heat equation to obtain the expression of $\theta(x,t)$.
- 3) In the limit $\nu \to 0$, show that $\psi(x,t) = \max_a \left[\psi_0(a) \frac{(x-a)^2}{2t} \right]$. Interpret the max as follows: considers a parabola $\frac{(a-x)^2}{2t} + C$ centered at x, start with a big constant C and reduce it until you contact the curve $\psi_0(a)$ for the first time.
- 4) Interpret double contacts, i.e. first contact at two different a values for a given x. What is the velocity profile resulting from multiple x's having the same contact point a?
 - 5) Can you adapt the arguments in 1) to the case $q(t) \neq 0$?

KOLMOGOROV "4/5" LAW FOR BURGERS' EQUATION

By using the same procedure that we discussed in class for the Navier-Stokes equation, derive the relation

$$\langle (u(x) - u(0))^3 \rangle = -12\varepsilon x, \qquad (3)$$

for the Burgers' equation. Here, ε is the dissipation rate.

MISSING PARTS IN THE DERIVATION OF THE KOLMOGOROV 4/5 LAW

We shall complete the derivation sketched in class of the 4/5 Kolmogorov law.

1) Use incompressibility to show that the two functions $B_{NN}(r)$ and $B_{LL}(r)$ in

$$\langle (v_i(\mathbf{r}) - v_i(\mathbf{0})) (v_j(\mathbf{r}) - v_j(\mathbf{0})) \rangle \equiv B_{NN} \delta_{ij} + (B_{LL} - B_{NN}) \frac{r_i r_j}{r^2}, \tag{4}$$

are related as $B_{NN} = (1 + r/2\partial_r) B_{LL}$.

Use this expression to prove that the component proportional to δ_{ij} in the time-dependent term $\partial_t \langle v_i(\mathbf{0}) v_j(\mathbf{r}) \rangle$ and the viscous term $2\nu\Delta\langle v_i(\mathbf{0})v_i(\mathbf{r})\rangle$ in the Navier-Stokes equation read:

$$\left(1 + \frac{r}{2}\partial_r\right)\left(-\frac{2}{3}\varepsilon - \frac{1}{2}\partial_t S_2(r,t)\right); \qquad -\nu\left(1 + \frac{r}{2}\partial_r\right)\left(\frac{1}{r^4}\partial_r\left(r^4\partial_r S_2(r,t)\right)\right), \tag{5}$$

where the second-order longitudinal structure function $S_2 = B_{LL}$. 2) Use incompressibility to show that the three functions $F_1(r)$, $F_2(r)$ and $F_3(r)$ in

$$b_{ij,k} \equiv \langle v_i(\mathbf{r})v_j(\mathbf{r})v_k(\mathbf{0})\rangle \equiv F_1 \delta_{ij} \frac{r_k}{r} + F_2 \left(\delta_{ik} \frac{r_j}{r} + \delta_{jk} \frac{r_i}{r}\right) + F_3 \frac{r_i r_j r_k}{r^3}, \tag{6}$$

are related by

$$F_2 = -\left(1 + \frac{r}{2}\partial_r\right)F_1; \qquad F_3 = -F_1 + r\partial_r F_1.$$
 (7)

- 3) Show that the longitudinal third-order structure $S_3(r) \equiv \langle (v_i(\mathbf{r}) v_i(\mathbf{0})) (v_j(\mathbf{r}) v_j(\mathbf{0})) (v_k(\mathbf{r}) v_k(\mathbf{0})) \rangle \frac{r_i r_j r_k}{r^3} = 0$ $12F_1(r)$.
- 4) Show that the component proportional to δ_{ij} for the non-linear terms $\partial_{r_k} [b_{kj,i} b_{j,ki}]$ in the Navier-Stokes equation reads

$$-2\left(1+\frac{r}{2}\partial_r\right)\left(\frac{1}{r^4}\partial_r\left(r^4F_1(r,t)\right)\right). \tag{8}$$

5) Gather all bits and pieces to obtain (34.20) in Landau-Lifchitz book

$$-\frac{2}{3}\varepsilon - \frac{1}{2}\partial_t S_2 = \frac{1}{6r^4}\partial_r \left(r^4 S_3\right) - \nu \frac{1}{r^4}\partial_r \left(r^4 \partial_r S_2\right) , \qquad (9)$$

which finally yields the 4/5 law.