HW5: Burgers’ equation and the 4/5 Kolmogorov’s law
To be returned on February 27, 2018

I. TRAVELING SHOCK IN BURGERS’ EQUATION

During our class, we found the steady shock for the 1D Burgers’ equation
Lo o 2
Opu(zx,t) + 583511 =voju, (1)

when we maintain the velocities © — £U as x — Foo.

1) Generalize the solution to the case when we maintain the velocities at infinity u(—o0) = U_ and u(+o0) = U
with U_ > U,

2) Verify that the dissipation remains finite in the limit v — 0.

3) The velocity of the shock that you have found above is a special case of the Rankine-Hugoniot condition. By
integrating the conservation law

Ow(x,t) + 0, f(w) =0, (2)
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around a shock moving with velocity Vi, derive the Rankine-Hugoniot relation Vs =
refer to the value on the proximal right and left of the shock, respectively.

where the subscripts +

II. PRE-SHOCK IN BURGERS’ EQUATION

During our class, we have shown that the first shock occurs at a time ¢* determined by the minimum value of the
gradient field at the initial time. The initial gradient and velocity fields are denoted go(a) and ug(a), with gg = 9, uo-
Denote the absolute minimum as min,go(a) = —G and expand go(a) ~ —G + «/2a* +. .. around its minimum, which
is assumed to be at the origin.

1) Denote by X(a,t) the position at time ¢ of a particle that was initially at a. Write down the expression for X
in terms of a and ug(a).

2) Re-derive the relation between the first shock time t* and G.

3) Show that the inverse Lagrangian map a(X,t) at ¢t = t* behaves singularly around the origin X = 0, namely it
has a 1/3 power-law behavior.

4) Show that at the time ¢* the velocity u(X,t) also develops a 1/3 singular behavior at the origin.

5) Show that the enstrophy Q(t) = [ (Ou/0z)* dx diverges as (t* —t)~1/2 as ¢ approaches t*.

III. HOPF-COLE TRANSFORMATION FOR BURGERS’ EQUATION

Define the stream function as u = —9,v¢(x,t). By taking the space derivative of the Burgers’ equation, write down
the equation for ¢;. An unknown function g(¢) appears when a space-derivative is factored out. Suppose first that
the unknown time-dependent function g(¢) = 0.

1) Use the Hopf-Cole transformation v (z,t) = 2vlogf(z,t) to reduce the previous equation for ; to the heat
equation.

2) Use the Gaussian propagator for the heat equation to obtain the expression of 6(x,t).

3) In the limit v — 0, show that ¢ (x,t) = max, |¥o(a) — %} Interpret the max as follows: considers a

parabola, (a;f)z
the first time.

4) Interpret double contacts, i.e. first contact at two different a values for a given x. What is the velocity profile
resulting from multiple x’s having the same contact point a?

5) Can you adapt the arguments in 1) to the case g(t) # 07

+ C centered at x, start with a big constant C' and reduce it until you contact the curve g (a) for



IV. KOLMOGOROYV ”4/5” LAW FOR BURGERS’ EQUATION
By using the same procedure that we discussed in class for the Navier-Stokes equation, derive the relation
((u(z) = u(0))*) = —12¢x, 3)

for the Burgers’ equation. Here, ¢ is the dissipation rate.

V. MISSING PARTS IN THE DERIVATION OF THE KOLMOGOROV 4/5 LAW
We shall complete the derivation sketched in class of the 4/5 Kolmogorov law.
1) Use incompressibility to show that the two functions By (r) and Bpr(r) in

T Ty

((vi(r) = vi(0)) (v(r) = v;(0))) = Bun0ij + (Brr — Byw)

: (4)

r2

are related as Byy = (1 +7/20,) Brr.
Use this expression to prove that the component proportional to d;; in the time-dependent term 9;(v;(0)v;(r)) and
the viscous term 2vA(v;(0)v;(r)) in the Navier-Stokes equation read :

r 2 1 r 1 4
(1 + 58,,) (—3g — 505 (r. t)) - (1 + 5@) (ﬂar (40,8, t))) : (5)
where the second-order longitudinal structure function Sy = By .
2) Use incompressibility to show that the three functions Fi(r), Fa(r) and F3(r) in

T T5 T ririT
bij,k = <Ui(’f')'l}j(7‘)’l)k(0)> = Fléij% + F2 (51k7] + 5jk?) + F3 ,,}3 k , (6)

are related by
L=- (1 + 267) Fl; F;=—F + T&.Fl . (7)

3) Show that the longitudinal third-order structure Ss(r) = ((vi(r) — v;(0)) (v;(r) — v;(0)) (vi(r) — v (0))) "5+~ =
12F1 (T‘)

4) Show that the component proportional to d;; for the non-linear terms 9,, [bi;; — bj k] in the Navier-Stokes
equation reads

r 1 4
-9 (1 + 5&) <7"48T (r*Fy(r, t))) . (8)
5) Gather all bits and pieces to obtain (34.20) in Landau-Lifchitz book
2 1 1 1
—35 — iatSQ = m&« (T4S3) — Vﬁa»p (T4ar52) s (9)

which finally yields the 4/5 law.



