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HW5: Burgers’ equation and the 4/5 Kolmogorov’s law 
To be returned on February 27, 2018

I. TRAVELING SHOCK IN BURGERS’ EQUATION

During our class, we found the steady shock for the 1D Burgers’ equation

∂tu(x, t) +
1

2
∂xu

2 = ν∂2xu , (1)

when we maintain the velocities u→ ±U as x→ ∓∞.

1) Generalize the solution to the case when we maintain the velocities at infinity u(−∞) = U− and u(+∞) = U+

with U− > U+.

2) Verify that the dissipation remains finite in the limit ν → 0.

3) The velocity of the shock that you have found above is a special case of the Rankine-Hugoniot condition. By
integrating the conservation law

∂tw(x, t) + ∂xf(w) = 0 , (2)

around a shock moving with velocity Vs, derive the Rankine-Hugoniot relation Vs = f+−f−
w+−w−

where the subscripts ±
refer to the value on the proximal right and left of the shock, respectively.

II. PRE-SHOCK IN BURGERS’ EQUATION

During our class, we have shown that the first shock occurs at a time t∗ determined by the minimum value of the
gradient field at the initial time. The initial gradient and velocity fields are denoted g0(a) and u0(a), with g0 = ∂au0.
Denote the absolute minimum as minag0(a) = −G and expand g0(a) ' −G+α/2a2 + . . . around its minimum, which
is assumed to be at the origin.

1) Denote by X(a, t) the position at time t of a particle that was initially at a. Write down the expression for X
in terms of a and u0(a).

2) Re-derive the relation between the first shock time t∗ and G.

3) Show that the inverse Lagrangian map a(X, t) at t = t∗ behaves singularly around the origin X = 0, namely it
has a 1/3 power-law behavior.

4) Show that at the time t∗ the velocity u(X, t) also develops a 1/3 singular behavior at the origin.

5) Show that the enstrophy Ω(t) =
∫

(∂u/∂x)
2
dx diverges as (t∗ − t)−1/2 as t approaches t∗.

III. HOPF-COLE TRANSFORMATION FOR BURGERS’ EQUATION

Define the stream function as u = −∂xψ(x, t). By taking the space derivative of the Burgers’ equation, write down
the equation for ψt. An unknown function g(t) appears when a space-derivative is factored out. Suppose first that
the unknown time-dependent function g(t) = 0.

1) Use the Hopf-Cole transformation ψ(x, t) ≡ 2ν log θ(x, t) to reduce the previous equation for ψt to the heat
equation.

2) Use the Gaussian propagator for the heat equation to obtain the expression of θ(x, t).

3) In the limit ν → 0, show that ψ(x, t) = maxa

[
ψ0(a)− (x−a)2

2t

]
. Interpret the max as follows : considers a

parabola (a−x)2

2t + C centered at x, start with a big constant C and reduce it until you contact the curve ψ0(a) for
the first time.

4) Interpret double contacts, i.e. first contact at two different a values for a given x. What is the velocity profile
resulting from multiple x’s having the same contact point a?

5) Can you adapt the arguments in 1) to the case g(t) 6= 0?
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IV. KOLMOGOROV ”4/5” LAW FOR BURGERS’ EQUATION

By using the same procedure that we discussed in class for the Navier-Stokes equation, derive the relation

〈(u(x)− u(0))
3〉 = −12εx , (3)

for the Burgers’ equation. Here, ε is the dissipation rate.

V. MISSING PARTS IN THE DERIVATION OF THE KOLMOGOROV 4/5 LAW

We shall complete the derivation sketched in class of the 4/5 Kolmogorov law.
1) Use incompressibility to show that the two functions BNN (r) and BLL(r) in

〈(vi(r)− vi(0)) (vj(r)− vj(0))〉 ≡ BNNδij + (BLL −BNN )
ri rj
r2

, (4)

are related as BNN = (1 + r/2∂r)BLL.
Use this expression to prove that the component proportional to δij in the time-dependent term ∂t〈vi(0)vj(r)〉 and

the viscous term 2ν∆〈vi(0)vj(r)〉 in the Navier-Stokes equation read :(
1 +

r

2
∂r

)(
−2

3
ε− 1

2
∂tS2(r, t)

)
; −ν

(
1 +

r

2
∂r

)( 1

r4
∂r
(
r4∂rS2(r, t)

))
, (5)

where the second-order longitudinal structure function S2 = BLL.
2) Use incompressibility to show that the three functions F1(r), F2(r) and F3(r) in

bij,k ≡ 〈vi(r)vj(r)vk(0)〉 ≡ F1δij
rk
r

+ F2

(
δik

rj
r

+ δjk
ri
r

)
+ F3

rirjrk
r3

, (6)

are related by

F2 = −
(

1 +
r

2
∂r

)
F1 ; F3 = −F1 + r∂rF1 . (7)

3) Show that the longitudinal third-order structure S3(r) ≡ 〈(vi(r)− vi(0)) (vj(r)− vj(0)) (vk(r)− vk(0))〉 rirjrkr3 =
12F1(r).

4) Show that the component proportional to δij for the non-linear terms ∂rk [bkj,i − bj,ki] in the Navier-Stokes
equation reads

−2
(

1 +
r

2
∂r

)( 1

r4
∂r
(
r4F1(r, t)

))
. (8)

5) Gather all bits and pieces to obtain (34.20) in Landau-Lifchitz book

−2

3
ε− 1

2
∂tS2 =

1

6r4
∂r
(
r4S3

)
− ν 1

r4
∂r
(
r4∂rS2

)
, (9)

which finally yields the 4/5 law.


